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ON THE STABILITY OF SOME LINEAR NONAUTONOMOUS SYSTEMS

E. F. Infante

The stability of systems described by differential equa-~
tions with time varying coefficients has been the subject of numerous
mathematical studies, see for example [1]; however very limited
sucess has been achieved from the practical viewpolnt with the
exception of the case in which the coefficients are periodic.
Recently Kozin [2], Caughey and Gray [3] and Ariaratnam [4] among
others have studied the stability of linear systems with stochastic
coefficients; in these studies the principal tools used have been
Gronwall's inequality and a norm used to reduce the vector dif-
ferential equation to a scalar equation. Kozin [2] used the so-
called taxicab norng Caughey and Gray [3] used a very special quad-
ratic norm and obtained results superior to those of Kozin. A
natural problem within this context is to determine the optimum
norm, among a certain class, for a specific problem. .

The stability theorems given in [2] and [3] depend on the
specific norms used in their proofs. The object of this paper is
to extend these theorems so that they are applicable for any quad-
ratic norm. This can be easily done through the use of.well known
results on pencils of quadratic forms [5], an application which
seems to have been overlooked. The theorem obtained in this manner,

and two corollaries, are then applied to the determination of con-



ditions for the stability of second order equations, for which it
is possible to obtain the optimum quadratic norm., The stability
results obtained in this manner, which as expected represent sufficient
but not necessary conditions, constitute a considerable improve-
ment over those presented in [2] and [3],and are believed to be
new. The examples are limited to second order systems since problems
of this type are often reduced to them,

The notation used here follows that of [2] and [3], and
emphasizes the application to stochastic processes. Naturally,
the results are equally applicable to deterministic systems which

satisfy the condition of Equation (2).

A STABILITY THEOREM

Consider the differential equation
% =[A + F(t)]Ix, (1)

where x is an n vector, A is a constant matrix and F(t) 1is

a matrix whose nonzero elements fij(t) are stochastic processes,
measurable, strictly stationary, and that they satisfy an ergodic
property ensuring the equality of time averages and ensemble averages.
If G 1is a measurable, integrable, function defined on fij(t)

then




t
B(O(E;5(9)) = BIG(£4(0)) = Im g [ 6(2y (¥))ar (2)
0O

exists with probability one. For simplicity let, in (1), E{F(t)} =0
and denote by Xmax[Q] the largest eigenvalue of the matrix Q,

Q' the transpose of Q.
THEOREM: If, for some positive definite matrix B and some € >0

E(A [A' + F'(t) + B(A+F(t))B] 5 - , (3)

then (1) is almost surely asymptotically stable in the large.

Proof: Consider the quadratic (Liapunov) function V(x) = x'Bx.

Then, along the trajectories of (1), define

AMt) = zgz% _ xv[(A+z2;§ + B(A+F)]x ()

From the extremal properties of pencils of quadratic forms [5] the

inequality

xmin[(A+F)'+B(A+F)B"1] £ AMt) = xmax[(A+F)'+B(A+F)B‘1] (5)

is obtained, where A and A_. , being the maximum and minimum
max min

eigenvalues of a pencil, are real. It follows from (4) and (5) that
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V(x(1)) = V(x(t))e %o S v((r))e  © Tty o

from which it follows that, if E{A(t)} = -€¢ for some € >0,
v(x(t)) is bounded and that V(x(t)) -0 as t —». This is the
condition imposed by (3), which proves the result.

It is remarked that a necessary condition for (3) to
hold is that the eigenvalues of matrix A have negative real parts.
The eigenvalue computation specified by (3) is far simple. It is
possible to obtain a result which is easier to compute, but not as

sharp.

COROLLARY 1: If, for some positive definite matrix B and some

€ >0

A

By [F'(£)+BF(6)B711) 8 -A, [A'+BAB ]-¢ (7

then (1) is almost surely asymptotically stable in the large.

Proof: The proof foliows immediately from the theorem by noting

that

A(t) = A,max[(A+F)'+B(A+F)B-l]§ Ao [A? +BAB 1 ]4A_ [P +BFB" 1Y, (8)

from which it follows upon the application of (7), that




E{(Mt))s Mool A +1§AB'l]+E{xmaX[F'(t)+BF(t)B'l]} SN (9)

the desired result.

It is obvious that unless the second inequality in (8)
is an equality the stability results obtained will not be as good
as those given by the theorem., For computational purposes, it is
desirable to further simplify the theorem. For this purpose let
(1) be written as

R

X = Ax + iElfi(t)ci , (10)

2
where R £ n, and recall that E{fi(t)} = 0.

COROLIARY 2: If, for some positive definite matrix B and some
€ >0

R 1 ' 1 ' 1

l§E{ | £.(t) | 3( Mol C3#BCs BT 1A L [ C;+BC,B™71)

1= (11)

)

s .\ _[A"+BAB™1]-¢
max

then (10) is almost surely asymptotically stable in the large.
Proof: In this case equation (4) of the theorem becomes

] 1
X' (CYB+BC, )x

x! (AVB4BA)x % £.(t)

Mt) = x' Bx : 'B
i=1 X" bx

(12)



Since E{fi(t)} 0 by assumption, define the two functions

. £.(t) if f.(t) zo0
£1(t) = 3 * * ,
* 0 if  £,(t) S0
(13)
£ (t if f£.(t) =0
() - i (8 1 1 (%)
0 if £,(t)2 0
It then follows that
E(£}(t)} = -E(£](t)) = 15| £, (0)]), (14)

and Equation (12) yields

R
=1 1 -1
< 1

E(Mt)} s A [A +BAB™ 7] + ileE[lfi(t)|}(XmaX[Ci+BCiB ]

(15)
A ___[C.+BC B‘l])
“Max- i 1 ’
from which, through application of condition (ll),

E{(A(t)]} = -€ (16)

is obtained, proving the corollary.
It is again to be expected that the results obtained from
this corollary will seldom be as good as those given by either the

Theorem or Corollary 1, since the majorizations used are rougher




than the previous ones.

The above theorem and corollaries say nothing regarding
how the matrix B should be chosen. If this matrix is chosen,
as in [3], as the solution of the matrix equation A'B+BA = -I

then the stability condition of the Theorem, Equation (3), becomes
E{) [-B'1+F'(t)+BF(t)B’l]} £ -€ (3%)
max ’

Corollary 1 yields the stability condition

WA

E{xmaX[F'(t)+BF(t)B'l]}

S—T8T ¢ (")

and the condition of Corollary 2 becomes

R
Z-%E{[fi(t)[}(Xmax[C;+BCiB_l]-xmin[C£+BCiB-l])
i=1
(11%)
< 1
= -€
Moyl B

The conditions implied by (T7') and (11') are clearly satisfied

if we majorize further in these equations by noting that, if

Q(t) = F'(t)+BF(t)B'l,

A

Ml Q8T 5 Z0Q, 4,

ij

and further that



-1 -1 i
L 1 - t <
2(>"mam><[Ci+BCiB ] >vmin[ci+BCiB D= u Imax ’

where |ul| is the largest eigenvalue, in absolute value, of
max ’ 4

Cci + BCiB'l. With these majorizations equations (7!) and (11%)

become
E{ 2|Q,.l] ér—l'm-e ()
i,J J max
and
% £(| £, (£)]}] u'] = rl—— - €, (11")
i=1 * max max[B]

the stability conditions given by Caughey and Gray [3].

It is then seen that the use of well known results on
pencils of quadratic forms yields stability theorems of time varying
systems that include those of [3]. The natural question at this
juncture is tc demand a theorem which yields the optimal matrix B
to be used. Unfortunately, this problem does not appear amenable
to analysis, as the third example of the next section indicates.

The purpose of the following section is to obtain the optimal matrix

B of the Theorem and Corollaries 1 and 2 for the two most common
second order equations of type (1). A third second order equation

is analyzed to show that an optimal matrix B does not exist; finally
an application of the theorem of this section to the study of the

stability of a nuclear reactor is shown. The stability results




thus obtained are compared with those given in [2] and [3], and
indicate that the matrix of Caughey and Gray is, in general, not

optimal.

SOME EXAMPLES

EXAMPLE 1l: Consider the differential equation
¥+ 2t% + (1+£(t))x =0 , (17)

studied by Kozin [2], Caughey and Gray [3] and Ariaratnam [4]. It
is assumed that E{f(t)} = 0, and the equation is rewritten as
0 1 0 0
x = x + f(t) X (18)
-1 -2 100
or, x = Ax + F(t)x. Consider, for the matrix B, the most general

quadratic positive definite form

B = y Oy >0 (19)

| .
where and ¢, are numbers to be determined.

1 2

Simple computations immediately yield that

-1 1



10
and that
] 1 -1
A' + F'(t) + B(A+F(t))B ~ =

—0y(1+7) =05 (0 -26) -

1 ai( l+f)+(ai+a2)[al(al-2g)+a2]

(21)

1%

||—'

O

o

~(1+8) oy (0 -28) oy (1+8) +(0y-28) (0 401y)

The maximum eigenvalue of this expression is computed as

R

Py aX[A'+F'+B(A+F)B'l] = -2t +\/l+(g a ) + —[oc +a -1-f t)+20¢l(§-ozl)]2

(22)
and setting f = 0 1in this eguation
-1 J o
A ax[A'+BAB ] = 28 +4(¢- al) + {a2+a -1+2¢ (g a )] . (23)
is obtained. Finally,
e a2 o7
- f R~
Fr(t) + BF(t)B L = %l 1 ooe, (2k)
2 |-1 a
1
from which the eigenvalue expression
M 1 (8) + BR(E)B™H) = = (1)) (25)
ax VF__ -
%

is immediately computed.
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In this particular example, then, the conditions for
almost sure asymptotic stability given by the previous section

become, for the theorem

1

E(-2¢ +Ju(g-al)2+ %{agmi-l-f(t)éal(g-al)f } s - (26)

and from either of the two corollaries

L

E(| £(t)]} s 2t -\/u(é-al)2+ é;{oQ+ai-l+2al(g;al)]2_e (27)

i
Vo,

for some Qs and some q, >0 and € >0. If the stability con-

ditions are desired in terms of E(|f(t)|}, the optimum values of
o, and q, for equations (26) and (27) coincide and are easily

1

computed as

2 NE
@, = £, a, = 1-¢, if ¢ = = >
(28)
2 . N2
a]_:g’ a2—§ ’ 1 §=? ’
upon which the stability conditions (26) become
2
B{|£(t)]) s 26Nt - e, e 52,
(29)
2 2 2
E(| f(t)+1-267|} = 267~ e, gg‘/____,

2
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while conditions (27) yield

25~/1-§2._ €, 3

A

mlﬁﬂ

E(| £(t)]}

1A

(30)

A
'_—1
]
m
iV

ol

E(J£(t)]) = ’ £

As expected, conditions (29) are weaker than conditions (30); this

is strongly emphasized by obtaining stability conditions from (29)
2 .

and (30) in terms of E{f (t)} through the use of Schwarz's in-

equality, remembering that E{f(t)} = 0. This process yields the

stability conditions

E{fg(t)} s 4@2(1-g2) - €, £ s %;é ,

(29")
E{fg(t)} S hgg_l - € , £ = Y;é ,

from (29) and, from (30)

B(£5(t)} s be2(1-60) - e, 3 é‘/-g-_g- ,

(301)
E(£5(t)) 5 1 - ¢ , ez¥Y2

2

a much more meager result.

If, at the outset, it is desired to obtain stability con-

ditions as a function of E[f2(t)}, then the values
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a; = &, a, = & +1 (31)

are optimal for equation (26) which yields

E(£7(t)) s be° . (32)

These results are a considerable improvement over those
of [2] and [3]. Figure 1 displays these results and those of these
two references in a pictorial form. It is of interest to note that
either (29') or (32) show that, for almost sure asymptotic stability,
it is possible to let E{fz(t)} — o  as the damping £ increases;
this result therefore answers a question raised by Mehr and Wang

[6] in their discussion of [2].
EXAMPIE 2: As a second example consider the equation
¥ + (2e4g(t))% + x = 0, E(g(t)} =0, (33)

which is rewritten in the usual companion form yielding, in the

notation of (1),

0 1 0 0
A= , F(t) = g(t) : (34)
-1 -2¢ o -1

Using again the matrix B given by (19) a simple computation yields



1k

M ax[A'+F'+B(A+F)B'l]= -2t-g(t) +

(35)
~/(g(t)+2g 2a ) + — [a 0L lﬁxlg(t)+2a1(§-al)]2
and
A aX[F'(t)+BF(t)B‘l].xmin[F'(t)+BF(t)B'l -
/ e
= le(v)] 1+—l : (36)

f\.)

Hence, in this case, the theorem of the previous section ylelds

for stabilty

-

g+'j(g (t)+2t-2x ) + = [a +a2 l+alg(t)+2al(§-a)]2 s .e ;3 (37)

2

either of the two corollaries give instead the condition

of /
Ellg(t)]} [ 1+ 2= =2¢ - u(ga)+_.[a 1+2a(§a)]
2

(38)

A straightforward computation yields, in the case that

stability conditions are desired as functions of E{|g(t)|}, that

the optimum values for a; and a, for equations (37) and (38)

colncide and are
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2 e 42 =
al=§, a2=l-§ R 1f§§\/_§l H
(39)
1 - o2 N5 -1
o, = s Q= if & = ;
1 2 P 4
J§2+l £-+1
°nd the conditions of stability become, for the theorem, equation
(37),
2 2 _~N5-1
Bl e(t)]) = 2eN1t" - e " =2
- (ko)
2 g2 J5 -1
B(| g(t)+2¢ - |} s28 == - ¢tz ;
ET+1 Vl+§2 ’ 2
and for either of the corollaries, equation (38),
2 o1
E{le(t)]) = 26V1-€2 -, £ s —>—
(41)
2 -
E{lg(t)‘} 2&[ l+_l§ 'l]' €, g ;\/; ’
g

It is noted that equation (40) gives weaker conditions for stability,

since application of Schwarz's inequality to this equation gives the

stability conditions

E(gg(t)} =

A

E(g2(t))

2 N5 -
be2(1-£9) - ¢ , & g.%rl :
(ko')
) 2E-NE2+1 2 N5 -1
Tl N £” 2 ==
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If stability conditions are desired as a function of
E{fg(t)}, the optimum values
2

£ £
Q = ¢, =] - ()42)
° (1+6%)°

applied to equation (37) yield,after application of Schwarz's
inequality, the stability condition
2

B (1)) £ —& - © (43)
1+£°

These stability results are shown in a pictorial representation in

Figure 2,

EXAMPLE 3: Consider, in this case, the differential equation

¥+ [26 + g(t)]x + [1+£(t)]x = 0, (Lh)

a generalization of the two previous differential equations. Using
the same matrix B of equation (19) and repeating the computations
indicated in the previous examples the following conditions for

almost sure stability in the large are obtained: from the theorem

n(-2enJ (g(1) 28-20,) % a—lz{agwi-mlgu)-f(t)@al( t-ci)1° )

(45)

.5__€,
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from Corolliary 1

2t/ ()4 L [2(t)-0pe(1))° s
2
. (46)
E{Zg_'/h(g-al)2+ éé [a2+a:§-l+2al(§-ozl)2 - €,
and from Corollary 2
a2
B(| £(t)| = + | g(t)| 1+ 5= )
Vo, 2
(47)

2
< 42t - ~/ u(e-al)2+ aé-[ag+0€-l+2al(é-al)l .
2

Inspection of these last three equations shows that, in
general, unless f(t) and g(t) are related no optimum matrix B
exists. Indeed, if stability conditions as a function of E{fg(t)}
and E{gg(t)} are desired, equation (45) yields, upon application

of the Schwarz's inequality, the condition

i L
o BeX(4)) o Bl (£)) 2B(15(6))217 5 byt (-0) 1 e,

(48)

and it is immediately seen that, for fixed values of oy and a5 > 0,

it is not possible to obtain simultaneously results which coincide
with those given by equation (32), in the event that g(t) = 0, and

with equation (4%), if f£(t) =0. Hence, the choice of o, and

a, depends on the relative magnitudes of E{fg(t)} and E{ge(t)}.

2
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The two extreme choices for al and a2

(31) and (42), in which cases we obtain the stability conditions

are given by equations

1 1
(e2+1)E(7(0) ) +] EE(&7(£) 1 24B(£5(1))2]° £ hetoe,

(49)
2 1 1 2
£ 2 £ 2, s o Lo
(1 = —=——=)E{g (t)}+[ Elg (£))}2+B(f (£)}°] 8 —% — <.
(1+£°)°2 & (%) 14€2 : 14t

The first of these equations yields equation (32) if g(t) = O,
while the second becomes equation (43) for f(t) = O. Appropriate
choices of Qy and ay >0 will give results bounded by these
two extremes.

If results are desired as functions of E{|f(t)|} and

E{| g(t)|)}, equation (47) can be optimized by the values

in which case the stability condition becomes

N5 -1

S .

E(| £(t)] +| g(t)|} = 26N 1-¢2 —¢, if ¢ (50)

5L : .
For ggé-%%— it is not possible to optimize simultaneously, and
onc is again forced to consider the relative magnitudes of E{|f(t)]|}
and E(|g(t)]}. To obtain extreme values the values for «, and

1
a, of equations (28) and (39) are used yielding
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E{[fl-&-\/? elel) = 1-¢ if g;g;
(51)
1
E{| f] + g} = 2g~/1+ lg -1, if ¢ ;'Jgé‘l )
£

Again, appropriate choices of al and Qs >0 will yield results
between these extremes.

As indicated previously, the results of this example are
rather disappointing since they indicate that an optimum quadratic
norm does not exist. On the other hand, it appears that if a dif-
ferential equation has only one time varying coefficient then the

determination of such a norm does not appear amenable to simple

analysis.

EXAMPLE L4: An Application. Consider the application of the theorem

of the previous section to the study of the stability of the solu-
tions of the differential equations of the kinetics of a simple

nuclear reactor problem., A set of differential equations modeling

such a system is

= p(: P nt e

S.

(22)

=]

n -~ AC

O.
I

where

c = concentration of total delayed neutron precursors (cz0)
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{ = neutron effective lifetime (£ > 0)

n = neutron density (n 2 0)

o]
PaanY
t+
~
HH

reactivity, a function of time
B = total delayed neutron fraction (B > 0)

A = mean decay constant of delayed neutron precursors. (A > 0)

This set of equations and its variants have been the subject of
numerous studies [T7]. In [8], for example, it was proved that if
p(t) is sinusoidal, for every frequency of the sinusoid and values
of the parameters, the solutions of (52) are unstable,

For notational simplicity, let

Xy = C, 8 = % , b = % (53)

and define
E{E%El} =-m, f(t) = E%El +m . (54)

Equations (52) then becomes

-m-b A 1 0
X = X + f(t) X, (55)
b -A 0 0

in the same form as given by (1). Application of the matrix B
given by (19) yields, after some computations and application of

Schwarz's inequality, that the theorem of the previous section will
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predict stability for some al, Qs >0 and € >0 1if

E{fe(t)}(agﬁai =S Maek[m+b+hal]-{b+h(al+a2)-al(m+b+XQl)}2-6.(56)

The optimum values of «, and Q, are immediately found

1
to be,

a, =0, % =% , (57)
upon which (56) becomes
2
B(£2(t)} = hmh ; (58)

or, in the notation of equation (52), the condition for almost sure

asymptotic stability in the large becomes

2 2
E(p(t)") = B{p(t)}” - WME{p(t)}-c . (59)
It is evident from this expression that E{p(t)} must be negative
for stability. In the specific case that the reactivity varies
sinusoidally as

p(t) = -m + h sin at (60)

stability condition (59) becomes
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h2 s 8 min - ¢ (61)

2

for some € > 0.

CONCLUSIONS

A simple theorem that gives sufficient conditions for
the almost sure stability of linear time varying systems has been
presented. As the applications of this theorem and its corollaries
to examples show, the stability results obtained are quite good
and simple to use. The question of determination of the optimum
quadratic norm for a system of differential equation with only one
time varying coefficient has not been resolved, and remains an

open problem.
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